Bootstrapping Neural Networks
نویسندگان
چکیده
منابع مشابه
Bootstrapping Neural Networks
Knowledge about the distribution of a statistical estimator is important for various purposes, such as the construction of confidence intervals for model parameters or the determination of critical values of tests. A widely used method to estimate this distribution is the so-called boot-strap, which is based on an imitation of the probabilistic structure of the data-generating process on the ba...
متن کاملBootstrapping Multilayer Neural Networks for Portfolio Construction
Despite having become firmly established as one of the major cornerstone principles of modern finance, traditional Markowitz mean-variance analysis has, nevertheless, failed to gain widespread acceptance as a practical tool for equity management. The Markowitz optimization enigma essentially centers on the severe estimation risk associated with the input parameters, as well as the resultant fin...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Bootstrapping Graph Convolutional Neural Networks for Autism Spectrum Disorder Classification
Using predictive models to identify patterns that can act as biomarkers for different neuropathoglogical conditions is becoming highly prevalent. In this paper, we consider the problem of Autism Spectrum Disorder (ASD) classification. While non-invasive imaging measurements, such as the rest state fMRI, are typically used in this problem, it can be beneficial to incorporate a wide variety of no...
متن کاملTraining Deep Neural Networks on Noisy Labels with Bootstrapping
Current state-of-the-art deep learning systems for visual object recognition and detection use purely supervised training with regularization such as dropout to avoid overfitting. The performance depends critically on the amount of labeled examples, and in current practice the labels are assumed to be unambiguous and accurate. However, this assumption often does not hold; e.g. in recognition, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2000
ISSN: 0899-7667,1530-888X
DOI: 10.1162/089976600300015204